Prawdopodobieństwo jest pojęciem matematycznym, które stało się obecnie pełnoprawną dyscypliną i stanowi istotną część statystyki. Losowy eksperyment z prawdopodobieństwem to wykonanie, które generuje określony wynik, oparty wyłącznie na przypadku. Wyniki losowego eksperymentu nazywane są zdarzeniami. Prawdopodobnie istnieją różne rodzaje zdarzeń, na przykład proste, złożone, wzajemnie wykluczające się, wyczerpujące, niezależne, zależne, równie prawdopodobne itp. Gdy zdarzenia nie mogą wystąpić w tym samym czasie, są one wywoływane wzajemnie się wykluczające
Z drugiej strony, jeśli na każde zdarzenie nie mają wpływu inne zdarzenia, są one wywoływane niezależne wydarzenia. Przeczytaj dokładnie artykuł przedstawiony poniżej, aby lepiej zrozumieć różnicę między wydarzeniami wykluczającymi się i niezależnymi.
Podstawa do porównania | Zdarzeń wzajemnie wykluczających | Niezależne wydarzenia |
---|---|---|
Znaczenie | Mówi się, że dwa zdarzenia wykluczają się wzajemnie, gdy ich wystąpienie nie jest jednoczesne. | Mówi się, że dwa zdarzenia są niezależne, gdy wystąpienie jednego zdarzenia nie może kontrolować wystąpienia innego. |
Wpływ | Wystąpienie jednego zdarzenia spowoduje nie wystąpienie drugiego. | Wystąpienie jednego zdarzenia nie będzie miało wpływu na wystąpienie drugiego. |
Wzór matematyczny | P (A i B) = 0 | P (A i B) = P (A) P (B) |
Zestawy na diagramie Venna | Nie zachodzi na siebie | Pokrywają się |
Wykluczające się wzajemnie zdarzenia to te, które nie mogą wystąpić jednocześnie, tj. Gdy wystąpienie jednego zdarzenia skutkuje brakiem drugiego zdarzenia. Takie zdarzenia nie mogą być prawdziwe jednocześnie. Dlatego wydarzenie jednego wydarzenia uniemożliwia wydarzenie innego wydarzenia. Są to również zdarzenia rozłączne.
Weźmy przykład rzutu monetą, którego wynikiem będzie głowa lub ogon. Głowa i ogon nie mogą występować jednocześnie. Weźmy inny przykład, załóżmy, że jeśli firma chce kupić maszynę, dla której ma dwie opcje Maszyna A i B. Wybrana zostanie maszyna, która jest opłacalna i produktywniejsza. Akceptacja maszyny A spowoduje automatycznie odrzucenie maszyny B i odwrotnie.
Jak sama nazwa wskazuje, zdarzenia niezależne to zdarzenia, w których prawdopodobieństwo jednego zdarzenia nie kontroluje prawdopodobieństwa wystąpienia drugiego zdarzenia. Wystąpienie lub nie wydarzenie takiego zdarzenia nie ma absolutnie żadnego wpływu na wydarzenie lub nie wydarzenie innego wydarzenia. Iloczyn ich oddzielnych prawdopodobieństw jest równy prawdopodobieństwu wystąpienia obu zdarzeń.
Weźmy przykład, załóżmy, że jeśli moneta zostanie rzucona dwukrotnie, ogon w pierwszej szansie i ogon w drugiej, zdarzenia są niezależne. Kolejny przykład, załóżmy, że jeśli kostka zostanie rzucona dwukrotnie, 5 w pierwszej szansie i 2 w drugiej, zdarzenia są niezależne.
Istotne różnice między wzajemnie wykluczającymi się i niezależnymi zdarzeniami zostały opracowane w następujący sposób:
Z powyższej dyskusji wynika, że oba wydarzenia nie są takie same. Co więcej, należy pamiętać o tym, że jeśli wydarzenie wyklucza się wzajemnie, to nie może być niezależne i odwrotnie. Jeśli dwa zdarzenia A i B wykluczają się wzajemnie, wówczas można je wyrazić jako P (AUB) = P (A) + P (B), a jeśli te same zmienne są niezależne, można je wyrazić jako P (A∩B) = P (A) P (B).