The kluczowa różnica między równaniem Nernsta a równaniem Goldmana jest to równanie Nernsta opisuje zależność między potencjałem redukcji a standardowym potencjałem elektrody, podczas gdy równanie Goldmana jest pochodną równania Nernsta i opisuje potencjał odwrócenia w błonie komórkowej.
Ogniwo elektrochemiczne to urządzenie elektryczne, które może wytwarzać energię elektryczną z wykorzystaniem energii chemicznej reakcji chemicznych. Albo możemy użyć tych urządzeń do wspomagania reakcji chemicznych poprzez dostarczenie wymaganej energii z elektryczności. Potencjał redukcyjny ogniwa elektrochemicznego określa zdolność ogniwa do wytwarzania energii elektrycznej.
1. Przegląd i kluczowa różnica
2. Co to jest równanie Nernsta
3. Co to jest równanie Goldmana
4. Porównanie obok siebie - Równanie Nernsta vs. równanie Goldmana w formie tabelarycznej
5. Podsumowanie
Równanie Nernsta jest wyrażeniem matematycznym, które daje związek między potencjałem redukcji a standardowym potencjałem redukcji ogniwa elektrochemicznego. Nazwa równania pochodzi od naukowca Walthera Nernsta. I został opracowany przy użyciu innych czynników wpływających na reakcje utleniania i redukcji elektrochemicznej, takich jak temperatura i aktywność chemiczna związków chemicznych ulegających utlenianiu i redukcji.
Wyprowadzając równanie Nernsta, musimy wziąć pod uwagę standardowe zmiany w energii swobodnej Gibbsa, które są związane z transformacjami elektrochemicznymi zachodzącymi w komórce. Reakcję redukcji ogniwa elektrochemicznego można podać w następujący sposób:
Ox + Z e- ⟶ czerwony
Według termodynamiki rzeczywista zmiana energii swobodnej reakcji wynosi,
E = Ezmniejszenie - miutlenianie
Jednak energia swobodna Gibbsa (GG) jest powiązana z E (różnica potencjałów) w następujący sposób:
GG = -nFE
Gdzie n jest liczbą elektronów przenoszonych między gatunkami chemicznymi, gdy reakcja postępuje, F jest stałą Faradaya. Jeśli weźmiemy pod uwagę warunki standardowe, równanie wygląda następująco:
ΔG0 = -NFE0
Możemy powiązać swobodną energię Gibbsa w niestandardowych warunkach z energią Gibbsa standardowych warunków za pomocą następującego równania.
ΔG = GG0 + RTlnQ
Następnie możemy zastąpić powyższe równania tym równaniem standardowym, aby uzyskać równanie Nernsta w następujący sposób:
-nFE = -nFE0 + RTlnQ
Możemy jednak przepisać powyższe równanie, używając wartości stałej Faradaya i R (uniwersalna stała gazu).
E = E0 - (0,0592 VlnQ / n)
Równanie Goldmana jest przydatne w określaniu potencjału zwrotnego w błonie komórkowej w fizjologii błony komórkowej. To równanie zostało nazwane na cześć naukowca Davida E. Goldmana, który opracował równanie. I wywodzi się z równania Nernsta. Równanie Goldmana bierze pod uwagę nierównomierny rozkład jonów przez błonę komórkową oraz różnice w przepuszczalności błony podczas określania tego potencjału odwrotnego. Równanie jest następujące:
Gdzie
Równanie Nernsta i równanie Goldmana są wyrażeniami matematycznymi, które można wykorzystać jako pomiary potencjału ogniw elektrochemicznych. Kluczowa różnica między równaniem Nernsta a równaniem Goldmana polega na tym, że równanie Nernsta opisuje zależność między potencjałem redukcji a standardowym potencjałem elektrody, podczas gdy równanie Goldmana jest pochodną równania Nernsta i opisuje potencjał odwrócenia na błonie komórkowej.
Poniższa infografika podsumowuje różnicę między równaniem Nernsta a równaniem Goldmana.
Równanie Nernsta i równanie Goldmana są wyrażeniami matematycznymi, które można wykorzystać jako pomiary potencjału ogniw elektrochemicznych. Kluczowa różnica między równaniem Nernsta a równaniem Goldmana polega na tym, że równanie Nernsta opisuje zależność między potencjałem redukcji a standardowym potencjałem elektrody, ale równanie Goldmana jest pochodną równania Nernsta i opisuje potencjał odwrócenia na błonie komórkowej.
1. „Równanie Nernsta”. Chemia LibreTexts, Libretexts, 5 czerwca 2019 r., Dostępne tutaj.
1. „ElectrochemCell” Alksub z angielskiej Wikipedii (CC BY-SA 3.0) przez Commons Wikimedia